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Abstract

The increasing sophistication of multimodal models necessitates benchmarks that
can rigorously evaluate their understanding and reasoning in complex, safety-
pertinent, open-world scenarios. This study introduces M4R (Measuring Massive
Multimodal Understanding and Reasoning), a large-scale benchmark uniquely de-
signed to assess reasoning capabilities across diverse open spaces, comprehensively
covering land, air, and water environments. M4R comprises approximately 2,000
videos and over 19,000 human-annotated question-answer pairs. These videos,
varying in length (short, medium, long) and presenting tasks of tiered difficulty
(interval-based choices and accuracy-based choices), encompass distinct opera-
tional domains: the land-based scenarios primarily focus on traffic environments,
particularly traffic collisions and accident cases; the air-based scenarios center
on airplane navigation; and the water-based scenarios involve ship movements.
M4R systematically evaluates models on temporal reasoning, spatial understanding,
and intent inference within these dynamic contexts. By providing a unified platform
across this broad spectrum of domains, M4R aims to drive the development of safer,
more robust, and generalizable AI systems. Benchmarking state-of-the-art multi-
modal models on our dataset reveals that even leading models, such as ChatGPT-4o
and Gemini, achieve only around a 30% success rate, highlighting the significant
challenges that remain in open-space multimodal reasoning. The code, leaderboard,
and dataset are available at: https://open-space-reasoning.github.io.

1 Introduction

As artificial intelligence (AI) continues to evolve, large multimodal models have shown impressive
capabilities across vision, language, and video domains. However, significant challenges remain
in deploying these models for real-world, safety-critical applications such as autonomous driving,
robotics, and aerial or maritime operations. While multimodal models demonstrate remarkable
performance in constrained or simulated environments, their robustness and depth of understanding
in high-stakes, dynamic scenarios are still far from sufficient.

In particular, deployment in mission-critical domains requires rigorous evaluation of models’ un-
derstanding and reasoning abilities under real-world conditions that involve uncertainty, physical
interactions, and causal dependencies. While recent benchmarks have advanced evaluation in specific
facets like temporal understanding (e.g., MVBench [22], REXTIME [6]) or domain-specific knowl-
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Understanding and Reasoning in Land-Space Scenarios

Understanding and Reasoning in Air-Space Scenarios

Understanding and Reasoning in Water-Space Scenarios

Understanding and Reasoning in Open Space Q & A:

"reasoning_style": "spatial_reasoning",
"question": "If I am standing on land, close to the end of the first appearing
moving airplane and facing its navigation direction, when the moving airplane
lands, is the second appearing airplane located to my front-left, front-right,
back-left, or back-right?",
"ground_truth": "B",
"options": ["A. front-left","B. front-right","C. back-left", "D. back-right"]

"reasoning_style": "temporal_reasoning",
"question": "How many boats are observed in this video?",
"ground_truth": "E",
"options": ["A. 4","B. 5","C. 6","D. 3","E. 2","F. 0","G. 7","H. 8", "I. 1"]

"reasoning_style": "intent_goal_reasoning",
"question": "If you are the red car starting from its initial position, and you
want to navigate to the opposite-direction road of the moving pickup truck,
you will perform the following actions (Note: for each [please fill in]):
{1. Go forward 2. [please fill in]}. You have reached your final destination.",
"ground_truth": "C",
"options": ["A. turn back", "B. turn left", "C. turn right", "D. turn back and left"]

Figure 1: Examples of multimodal Understanding and Reasoning in Open-Space Scenarios

edge (e.g., MMMU [45], DriveLM [32]), there remains a paucity of unified platforms that assess
reasoning across the combined spectrum of land, air, and water operations. To address this, our work
defines open space as unstructured or semi-structured outdoor environments characterized by high
variability, dynamic interactions, and minimal physical boundaries. This includes air space (e.g.,
airplane navigation), water space (e.g., ship and boat movements), and land space (e.g., road traffic
involving diverse vehicle types). These settings inherently involve complex temporal dependencies,
causal relationships, and real-world physical constraints, demanding advanced, robust reasoning
capabilities for genuine open-world understanding.

We introduce M4R, a comprehensive evaluation framework. Specifically, M4R focuses on reasoning
across the aforementioned land traffic, airspace, and waterway domains—settings where safety,
perception, and decision-making are deeply interdependent. Unlike benchmarks focusing on isolated
skills or single domains, M4R challenges models on several key reasoning capabilities: temporal-
causal reasoning (understanding event sequences and causality over extended periods); spatial
understanding (comprehending dynamic spatial relationships and multi-agent trajectories); intent
and goal planning/inference (deducing agent intentions and goals), which includes complex strategic
& counterfactual reasoning (assessing understanding of higher-order strategies, action implications,
and ‘what-if’ scenarios). Several representative examples from M4R are illustrated in Figure 1. By
systematically probing these capabilities across diverse safety-pertinent scenarios, M4R provides a
framework for assessing progress towards AI systems that can reliably operate in the real world.

Our key contributions are summarized as follows:

• Unified Open-World Evaluation Suite: We introduce M4R, a large-scale, video-based benchmark
uniquely covering land traffic, airspace, and waterway scenarios to provide a comprehensive
assessment of multimodal reasoning across these distinct yet complementary safety-critical open
spaces.

• Reasoning-Centric Evaluation: M4R systematically evaluates critical reasoning facets including
temporal-causal understanding, dynamic spatial awareness, intent and goal reasoning, within
dynamic and physically grounded settings.

• Real-World Limitations and Safety Gaps: We highlight limitations in current AI systems’
reasoning performance in open-space domains (e.g., autonomous driving, aviation, and maritime
environments), and provide a challenging testbed to drive the development of safer and more robust
multimodal AI systems.

2 Related Work

2.1 General Multimodal Understanding Benchmarks

Recent years have witnessed growing interest in video understanding benchmarks. Foundational
video question-answering (QA) efforts include MSR-VTT [43] and Next-QA [41]. More recently,
MVBench [22], with its 20 diverse temporal tasks derived from static images, and MLVU [48]
have expanded video QA capabilities across multiple domains. The challenge of long-form video
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understanding has seen contributions from benchmarks such as EgoSchema [26], Video-LLaVA [9],
MovieChat [34], and LongVideoBench [40]. Parallelly, video captioning benchmarks such as Aurora-
Cap [5], HiCM2 [19], and LongCaptioning [39] focus on generating detailed textual descriptions.

A significant trend is the push for more rigorous temporal and causal reasoning. REXTIME [6], for in-
stance, probes the linking of causally related events across separate video segments. For multi-domain
understanding, MMWorld [15] evaluates models across diverse disciplines, requiring explanations
and counterfactuals. Furthermore, LVBench [38] integrates video inputs for QA. Beyond video,
reasoning from static images is explored by MME [18] (including CoT extensions), MMMU [45]
(evaluating expert-level multi-discipline reasoning), and benchmarks for mathematical reasoning like
Dynamath [50] and MultiModal-MATH [49]. For academic content, Video-MMLU [36] offers a
large-scale lecture video benchmark.

While these diverse benchmarks significantly advance specific aspects of multimodal understanding—
be it general video comprehension, temporal analysis, long-form narrative understanding, captioning,
or static image reasoning—they often do not provide a framework for unified evaluation across land,
air, and maritime open-space environments, nor the specific blend of complex reasoning (including
strategic and intent-based inference) that M4R is designed to evaluate within these contexts.

2.2 Safety-Critical Multimodal Understanding Benchmarks

Evaluating models in safety-critical domains, where reasoning under uncertainty is vital, is an
emerging focus. Initial efforts addressed static image safety [23], model robustness against adversarial
attacks (e.g., FigStep [11], JailBreakV [25]) [31, 28], or indoor robotics [44].

Autonomous driving has been a major driver of safety-critical research. Foundational datasets such
as nuScenes1 and Waymo Open Dataset2, along with language-integrated efforts such as DriveLM
and DriveVLM [32, 37], are closely related to M4R’s goals due to their real-world video and
safety considerations. However, a key motivation for M4R was that these traditionally emphasized
perception and planning, with less focus on deep safety-critical reasoning for tasks such as accident
cause analysis or complex decision-making. Other specialized benchmarks tackle related issues such
as video anomaly detection (e.g., VANE-Bench [10]).

While advancements continue in specialized video reasoning and domain-specific safety evaluations,
existing benchmarks still largely focus on single operational domains. Critically, they often lack
sufficient coverage of high-risk scenarios such as traffic collisions, ship navigation, and airplane
takeoff/landing events across combined land, air, and water settings. A unified platform to consistently
evaluate robust, generalizable reasoning (e.g., temporal-causal, spatial, intent, and strategic analysis)
across these diverse, safety-critical open spaces also remains absent. To address this specific void,
M4R distinctively incorporates these challenging high-risk scenarios from all three domains. The
reliability of its complex reasoning evaluation is ensured as all annotations were generated by highly
educated annotators (at least Master’s degree). M4R thus provides a much-needed testbed for
fostering robust, adaptable AI capable of open-world understanding.

3 Understanding and Reasoning in Open Space

3.1 Open Space Settings

We design the benchmark around three types of open-space environments: land space, focusing
primarily on traffic accident understanding and reasoning; air space, centered on airplane takeoff
and landing scenarios; and water space, which emphasizes ship navigation understanding and
reasoning. Within each environment, we construct tasks that evaluate models across three key
reasoning dimensions: dynamic temporal reasoning, spatial reasoning, and intent and goal reasoning.
Representative examples for each reasoning type are illustrated in Figure 2.

For each reasoning style, we design tasks with varying levels of difficulty using two formats: interval-
based choices and accuracy-based choices. Easy tasks provide approximately 3 coarse-grained
interval choices, medium tasks offer 6 intermediate-level intervals, and hard tasks present 12 fine-

1https://www.nuscenes.org/
2https://waymo.com/open/
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Figure 2: Examples of reasoning question settings in M4R across three key reasoning types: Temporal
Reasoning, which involves understanding event sequences and motion over time; Spatial Reasoning,
which focuses on relative positioning and orientation in space; and Intent Reasoning, which evaluates
understanding of goal-directed behaviors and decision-making in dynamic environments.

grained discrete options that require an exact match with the correct answer. The number of tasks
across the three difficulty levels is evenly distributed, with each comprising one-third of the total. In
all cases, the model must select a single best answer, enabling the benchmark to assess performance
under increasing levels of precision and ambiguity.

Land Space In our land-space setting, we include a comprehensive range of traffic scenarios,
encompassing diverse collision events under varying weather conditions such as snow, rain, and
sunshine, as detailed in Table 1. Specific examples of these scenarios are illustrated in Figure 3,
and more detailed examples are provided in Appendix B. To enhance contextual diversity, we
incorporate multiple camera perspectives—including ego-centric and third-person views—particularly
for accident scenes. The dataset features incidents involving a wide variety of vehicle types, including
buses, motorcycles, sedans, and several categories of trucks, across different road environments such
as highways, freeways, and rural roads. The associated questions are designed to evaluate models
across multiple reasoning dimensions, including temporal-causal understanding, spatial reasoning,
and intent and goal planning. The original land-space video datasets are sourced from [4, 30], which
primarily collected videos from YouTube and other public internet platforms.
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Figure 3: Land-space traffic accident scenarios for open-space video understanding and reasoning
include intersection collisions, urban road accidents, nighttime incidents, rural road accidents, snow-
covered road collisions, and freeway accidents.

Table 1: Overview of traffic accident scenarios in our benchmark, covering diverse road environments,
weather conditions, and involved traffic participants.

Index Categories
Road Environments: Intersection, Highway, Freeway, Rural Road, Tunnel, Urban Road, Bridge, Parking Lot
Weather Conditions: Snow, Rain, Sunshine, Cloudy, Foggy, Windy
Involved Participants: Sedan, SUV, Bus, Truck, Motorcycle, Bicycle, Van, Pickup, Trailer, Pedestrian

Air Space In airspace scenarios, we primarily focus on takeoff and landing events, emphasizing
the analysis of airplane navigation directions and perceptual understanding. Airplanes represent a
largely unexplored domain in large multimodal research, despite their significant real-world impact.
Our benchmark investigates various aspects of airplane behavior, including differences in navigation
patterns, aircraft sizes, and motion dynamics across different types of airplanes. These scenarios also
incorporate videos of varying lengths and are designed to evaluate models on multiple reasoning
dimensions, including spatial reasoning, temporal reasoning, and intent and goal inference. We
further assess model performance across different difficulty levels using both interval-based and
accuracy-based multiple-choice formats. The airspace videos are sourced from publicly available
footage, including references such as 3, 4, and 5.

Water Space We include videos from both river and ocean scenarios, featuring varying video
lengths and difficulty levels. The dataset encompasses a diverse range of watercraft, including
different types of boats and ships, under a broad set of navigation conditions. Despite their real-
world importance, river and ocean environments remain underexplored in the context of large
multimodal models. To address this gap, we evaluate model performance across multiple reasoning
styles—temporal, spatial, and intent and goal reasoning—using video-based tasks of varying durations
and difficulty levels. Task difficulty is controlled through both interval-based and accuracy-based
multiple-choice formats. The water-space videos are sourced from publicly available datasets,
including [13, 27].

3.2 Dataset Analysis

This benchmark includes approximately 2,000 videos and 19,000 human-annotated question-answer
pairs, covering a wide range of reasoning tasks. All annotations were performed by highly educated

3https://www.youtube.com/watch?v=i6CrbqeksJ8
4https://www.youtube.com/watch?v=k5yvzTw08K8
5https://www.youtube.com/watch?v=Bt9tpiAmTs8
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annotators, each holding at least a master’s degree in engineering-related fields such as mathematics
or computer science. The dataset features a variety of video lengths, categories, and frame counts,
and spans three primary open-space reasoning scenarios: land space, water space, and air space.
An overview of the dataset’s characteristics is shown in Figure 4, which illustrates the distributions
of video duration, domain coverage, and reasoning styles. During annotation, we first design the
hard-level tasks and label each question with the ground-truth answer. Based on these, we then
construct the medium and easy tasks. The primary differences between difficulty levels lie in the
number and types of answer choices. Details of the annotation procedure and difficulty levels are
provided in Appendix B.

Specifically, (a) Video Length: A substantial portion of the videos (76.5%) are short, with durations
under 10 seconds. The remaining videos are distributed across longer intervals: 10–30 seconds
(3.7%), 30–60 seconds (4.6%), 60–120 seconds (4.8%), 120–300 seconds (4.4%), and over 300
seconds (6.0%). This distribution reflects a strong emphasis on short, dynamic scenarios that test
rapid perception and reasoning. (b) Video Categories: The benchmark spans three open-space
domains. Land space, which primarily involves traffic and safety-related scenarios, comprises 83.0%
of the videos. Air space accounts for 10.2%, and water space makes up 6.8%. This distribution
highlights both the practical importance of land-based reasoning and the inclusion of underrepresented
domains such as maritime and aviation environments. (c) Reasoning Styles: M4R supports three
major reasoning types, with a relatively balanced distribution: spatial reasoning (35.4%), temporal
reasoning (34.0%), and intent reasoning (30.6%). This design ensures comprehensive evaluation
across key dimensions essential for real-world multimodal understanding.

Overall, the dataset provides a rich and diverse collection of real-world video scenarios across multiple
modalities and time scales, offering a robust benchmark for evaluating multimodal understanding and
reasoning in open-space environments.

(0 10)

76.5%

(10 30)
3.7%

(30 60)

4.6%

(60 120)

4.8%

(120 300)

4.4%

(300 )

6.0%

Distribution of Video Duration Ranges

(a) Video duration.

Water Space

6.8%

Air Space

10.2%

Land Space (Safety)

83.0%

Distribution of Video Categories

(b) Video categories.

Intent Reasoning
30.6%

Temporal Reasoning

34.0%

Spatial Reasoning
35.4%

Distribution of Reasoning Types

(c) Reasoning types.

Figure 4: Distribution of video and task properties in the M4R benchmark.

3.3 Comparison with Existing Benchmarks

Table 2 provides a comparative analysis of M4R alongside existing evaluation benchmarks for
multimodal models. Most benchmarks primarily focus on assessing the multimodal reasoning
capabilities of multimodal models [14, 35, 48]; however, a significant limitation is the prevalent
oversight of safety considerations. While a few recent benchmarks have begun to evaluate safety
aspects of multimodal models [49, 23], they often do not incorporate video question-answering
data. However, single-frame capture, in most cases, can introduce uncertainties in reasoning and is
insufficient for adequately assessing multimodal models’ capabilities in handling safety issues. In
contrast, our M4R introduces a large-scale curated collection of video question-answer pairs that
specifically focus on open-space traffic reasoning in real-world safety-related scenarios. Comprising
2,000 carefully selected videos and 19,000 reasoning question-answer pairs, the M4R features a size
competitive with existing benchmarks, thus highlighting the comprehensiveness of our evaluation set.

6



Table 2: Benchmark comparison for multimodal understanding and reasoning tasks.
Dataset Safety Traffic Annotation Real-World Scenarios # Video # Ave. Duration (s) Question-answering

Number Type
MovieChat-1K [35] × × Human ✓ General 1,000 564 13,000 Open-ended
MMWorld [14] × × Human ✓ General 1,910 107 6,627 Multiple-choice
MLVU [48] × × Human ✓ General 1,730 930 3,102 Multiple-choice
MVBench [1] × × Human & LLM ✓ General 4,000 16 4,000 Multiple-choice
LongVideoBench [40] × × Human ✓ General 3,763 473 6,678 Multiple-choice
TempCompass [24] × × Human & LLM ✓ General 410 < 30 7,540 Multiple-choice
VSI-Bench [44] × × Human ✓ Embodied 288 50-100 5,000 Multiple-choice
Video-MMMU [16] × × Human & LLM × Professional 300 506 900 Multiple-choice
Video-MMLU [36] × × Human & LLM × Professional 1,065 109 15,746 Open-ended
DriveBench [42] ✓ ✓ Human & LLM ✓ Autonomous Driving × × 19,200 Multiple-choice
DriveLM [33] ✓ ✓ Human ✓ Autonomous Driving × × 15,480 Open-ended
nuScenes-QA [29] × ✓ Human ✓ Autonomous Driving × × 83,337 Open-ended
MSSBench [49] ✓ × Human & LLM ✓ General × × 1960 Open-ended
MMSBench [23] ✓ × LLM ✓ General × × 5040 Open-ended

M4R (ours) ✓ ✓ Human ✓ General 2000 56 19,000 Multiple-choice

Table 3: Multimodal understanding and reasoning evaluation using M4R in open space, across Land,
Water, and Air domains (columns = difficulty levels).

Models Size Hard Medium Easy
Avg. Temp. Spatial Intent Avg. Temp. Spatial Intent Avg. Temp. Spatial Intent

GPT 4o - 22.21 24.92 27.14 13.80 41.21 44.89 47.03 28.19 45.01 55.33 38.08 43.72
Gemini 2.5 pro - 31.01 38.18 30.08 25.20 41.07 41.31 48.33 33.06 59.36 61.16 54.51 58.09
Gemini 1.5 pro - 19.07 22.53 21.57 17.25 37.13 40.69 43.81 31.06 48.05 53.22 47.85 45.37
Claude 3.5 - 28.89 32.84 29.18 23.41 37.99 36.46 47.34 31.09 50.14 53.28 48.51 46.40
InternVL2.5 26B 22.45 25.33 27.42 12.64 36.39 37.85 47.51 27.55 55.08 58.41 53.46 44.45
InternVL2.5 8B 20.39 21.30 29.41 11.42 35.44 39.85 51.07 18.98 51.03 53.64 54.52 42.20
InternVL2.5 4B 17.31 17.39 23.04 13.13 36.53 31.21 45.36 32.68 48.93 46.55 52.31 43.65
LLaVA Next 32B 17.83 11.28 26.09 10.10 21.07 13.57 33.08 14.24 35.32 31.22 40.09 34.34
LLaVA Video 7B 17.35 13.02 27.49 10.18 24.04 19.33 30.50 19.72 30.44 29.41 34.12 31.64
LLaVA OneVision 7B 14.27 9.55 24.74 10.15 17.76 17.81 24.71 17.12 31.10 29.46 33.78 29.88
Qwen2.5 VL 32B 19.39 13.19 27.85 14.05 29.93 23.34 41.94 25.82 48.35 50.68 47.82 44.97
Qwen2.5 VL 7B 20.34 12.31 28.40 15.48 28.79 22.18 34.64 22.89 37.97 38.87 33.20 36.45

4 Experiments

In our experiments, we build upon the lmms-eval framework [46] as the foundation for our bench-
mark and extend it to support the specific requirements of M4R. We conduct comprehensive evalua-
tions to assess the performance of SOTA multimodal models across diverse open-space scenarios.

4.1 Comparative Evaluation of Multi-Modal Models in M4R

Table 3 presents the performance of multi-modal models across the Land, Water, and Air domains in
the OpenRBench benchmark. Results indicate that SOTA proprietary models, such as Gemini 2.5 Pro
and GPT-4o, outperform open-source counterparts, particularly on all tasks. Gemini 2.5 Pro achieves
the highest average score (59.36) on easy tasks and maintains strong performance in hard and medium
settings. GPT-4o, while slightly behind on easy tasks, leads in medium difficulty with a score of
41.21. However, all models—including the strongest ones—exhibit notable performance degradation
on hard tasks, with average scores falling below 35. These results underscore persistent limitations in
complex real-world reasoning, including temporal, spatial, and intent understanding, and highlight
the need for more robust and generalizable multi-modal systems for open-space environments.

4.2 Performance Analysis for Each Space Task

Land Space Evaluation: Table 4 presents the evaluation results of multi-modal models on the
Land domain of OpenRBench, categorized by task difficulty (Easy, Medium, Hard) and reasoning
type (Temporal, Spatial, Intent). Among the models evaluated, Gemini 2.5 Pro consistently performs
best in the Easy setting with an average score of 57.90, and remains competitive in Medium (40.57)
and Hard (31.06) tasks. GPT-4o shows strong performance in Medium (43.05) and Easy (44.17)
tasks, leading in temporal and spatial reasoning, but struggles more with hard tasks (25.82). Across
all models, performance declines significantly with increasing task difficulty, particularly in intent
reasoning under the Hard setting—highlighting a persistent challenge for current models. Overall,
proprietary models (e.g., Gemini, GPT-4o) outperform open-source counterparts, though no model
achieves robust performance across all difficulty levels and reasoning types.
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Table 4: Understanding and reasoning evaluation for M4R in Land Space domain (columns =
difficulty levels).

Models Size Hard Medium Easy
Avg. Temp. Spatial Intent Avg. Temp. Spatial Intent Avg. Temp. Spatial Intent

GPT 4o - 25.82 29.61 31.38 13.21 43.05 47.63 48.59 31.83 44.17 54.45 36.01 43.67
Gemini 2.5 pro - 31.06 38.75 37.54 23.46 40.57 39.13 47.22 30.33 57.90 58.24 56.23 55.52
Gemini 1.5 pro - 17.79 20.90 20.72 15.81 35.98 39.05 41.11 28.75 47.00 56.01 45.68 40.25
Claude 3.5 - 30.82 35.04 31.65 22.91 37.93 36.39 46.36 32.63 51.08 53.32 47.01 48.93
InternVL2.5 26B 23.92 31.00 29.75 11.50 35.42 41.75 43.00 22.75 56.33 61.00 56.25 46.50
InternVL2.5 8B 21.25 24.50 31.25 10.50 34.83 42.25 48.25 14.50 52.34 55.50 57.00 42.50
InternVL2.5 4B 17.50 19.50 25.50 12.00 35.33 34.00 41.25 26.50 48.00 46.00 51.50 43.50
LLaVA Next 32B 19.34 13.50 24.50 11.00 21.83 15.50 31.25 14.00 37.09 27.25 41.75 35.00
LLaVA Video 7B 19.67 15.00 31.25 12.00 25.42 22.00 32.50 22.50 30.58 31.00 32.25 34.00
LLaVA OneVision 7B 13.83 8.50 21.75 12.00 16.67 20.50 19.00 17.00 30.83 29.75 32.25 29.00
Qwen2.5 VL 32B 23.33 18.00 29.50 18.00 27.99 25.75 38.50 23.50 45.67 53.00 45.50 41.25
Qwen2.5 VL 7B 23.42 18.25 30.50 20.75 32.17 30.50 37.00 24.00 43.58 44.00 38.50 42.75

Table 5: Understanding and reasoning evaluation for M4R in Air Space domain (columns = difficulty
levels).

Models Size Hard Medium Easy
Avg. Temp. Spatial Intent Avg. Temp. Spatial Intent Avg. Temp. Spatial Intent

GPT 4o - 18.02 12.21 29.77 15.46 30.53 31.33 40.83 31.83 40.72 37.83 37.00 39.67
Gemini 2.5 pro - 31.86 34.26 21.56 34.25 41.21 44.08 38.25 53.50 55.74 59.72 47.17 61.17
Gemini 1.5 pro - 22.88 19.15 24.75 22.25 36.21 32.83 49.50 32.00 43.89 40.56 41.89 49.67
Claude 3.5 - 24.31 16.55 32.30 23.00 36.44 32.60 47.79 33.33 41.03 37.56 41.61 45.33
InternVL2.5 26B 18.60 17.75 26.50 12.00 20.14 26.31 23.31 46.83 32.11 36.31 34.25 46.42
InternVL2.5 8B 18.71 14.80 29.75 10.00 23.73 30.42 32.92 46.00 37.86 40.33 36.50 40.00
InternVL2.5 4B 15.14 14.25 16.75 13.13 24.41 27.00 28.25 46.75 38.31 39.64 38.39 41.25
LLaVA Next 32B 18.23 8.98 35.08 10.15 20.71 17.47 37.33 21.67 28.60 32.69 34.36 34.67
LLaVA Video 7B 15.56 8.48 25.80 9.00 20.35 20.25 25.83 21.33 29.62 30.94 30.97 30.00
LLaVA OneVision 7B 15.76 11.00 26.75 9.50 19.81 19.84 23.83 20.83 29.62 30.94 30.97 30.00
Qwen2.5 VL 32B 16.35 3.43 31.08 13.75 35.85 29.00 27.17 43.67 51.73 52.33 40.61 54.44
Qwen2.5 VL 7B 16.38 1.16 30.00 16.00 28.70 22.61 30.33 25.83 38.92 35.78 36.39 30.00

Air Space Evaluation: Table 5 reports the evaluation results for multi-modal models in the Air
Space domain of OpenRBench. The results are broken down by task difficulty (Easy, Medium,
Hard) and reasoning types (Temporal, Spatial, Intent). Gemini 2.5 Pro stands out with the strongest
overall performance, achieving the highest average scores across all difficulty levels, including 31.86
(Hard), 41.21 (Medium), and 55.74 (Easy). It particularly excels in intent reasoning, reaching up
to 61.17 in the Easy setting. GPT-4o also performs competitively, especially on Easy tasks (40.72)
and intent reasoning (39.67), though it lags behind Gemini on harder examples. Open-source models
such as InternVL2.5 and Qwen2.5 show moderate success in temporal reasoning but consistently
underperform in intent reasoning. Overall, the trend mirrors that of the Land domain: performance
declines significantly as difficulty increases, with the largest drop occurring in temporal and intent
reasoning tasks. These results emphasize the challenges multi-modal models face in reliably operating
in dynamic, real-world Air Space scenarios.

Table 6: Understanding and reasoning evaluation for M4R in Water Space domain (columns =
difficulty levels).

Models Size Hard Medium Easy
Avg. Temp. Spatial Intent Avg. Temp. Spatial Intent Avg. Temp. Spatial Intent

GPT4o - 19.97 22.62 21.29 14.73 37.30 39.48 50.53 20.84 47.16 63.06 38.68 41.69
Gemini 2.5 pro - 28.11 33.38 22.06 26.80 40.92 44.30 56.28 29.45 60.92 68.47 52.68 58.04
Gemini 1.5 pro - 25.48 31.25 23.57 21.97 41.86 48.64 50.01 41.17 49.84 47.47 50.30 50.02
Claude 3.5 - 24.14 23.67 20.77 26.06 39.26 40.07 53.80 26.67 50.27 58.37 52.46 39.70
InternVL2.5 26B 22.35 17.68 25.19 22.01 41.01 25.68 60.34 34.78 52.42 55.55 51.60 43.28
InternVL2.5 8B 21.98 13.74 27.65 21.21 41.01 33.81 60.90 25.26 51.51 57.54 51.19 46.09
InternVL2.5 4B 20.92 17.01 24.68 21.60 44.13 27.18 62.23 44.04 53.28 52.10 55.76 44.42
LLaVA Next 32B 13.85 7.96 27.13 7.98 20.18 10.84 33.10 16.68 35.00 34.48 39.46 33.38
LLaVA Video 7B 13.45 9.70 21.59 7.10 22.14 19.81 29.13 18.95 30.31 23.56 37.22 30.00
LLaVA OneVision 7B 15.00 9.42 27.25 8.42 22.59 16.27 32.09 18.29 32.95 29.67 37.08 31.44
Qwen2.5 VL 32B 12.99 7.97 23.63 7.37 33.25 19.69 50.00 29.72 52.04 45.12 56.49 43.05
Qwen2.5 VL 7B 13.76 7.02 26.33 8.00 26.10 18.94 28.36 24.67 30.17 34.70 20.74 34.95
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Water Space Evaluation: Table 6 presents evaluation results for multi-modal models in the Water
Space domain of OpenRBench. The evaluation is broken down by task difficulty (Easy, Medium,
Hard) and reasoning type (Temporal, Spatial, Intent). Gemini 2.5 Pro again leads overall performance,
achieving the highest average scores in both Easy (60.92) and Hard (28.11) tasks, and competitive
results in Medium (40.92). It demonstrates particularly strong spatial and intent reasoning capabilities.
GPT-4o performs well in Medium (37.30) and Easy (47.16) settings, but struggles more with hard
tasks (19.97). Open-source models such as InternVL2.5 and Qwen2.5 show varying levels of
competence, particularly in temporal reasoning. As with other domains, all models experience a
marked performance drop on hard tasks, especially in intent reasoning. These results reflect the
continued difficulty of multi-modal reasoning in dynamic, ambiguous environments like rivers and
oceans, reinforcing the need for more advanced AI systems.

4.3 Performance Analysis for Each Space Task with Video Length and Scenarios

Table 7: Evaluation of M4R in the Land Space domain using Short, Medium, and Long Videos,
categorized by reasoning types, based on a subset of the dataset.
Difficulty Models Size Over. Avg. Short Video Scenarios Medium Video Scenarios Long Video Scenarios

Avg. Temporal Spatial Intent Avg. Temporal Spatial Intent Avg. Temporal Spatial Intent
GPT 4o [17] - 24.41 26.78 34.65 34.69 11 35.70 43.14 32.14 31.82 11.00 6 26 1
Gemini 2.5 pro [12] - 29.76 34.84 36.63 44.90 23.0 35.76 45.10 30.36 31.82 18.67 10.0 28.0 18.0
Gemini 1.5 pro [8] - 18.76 19.72 23.76 20.41 15 24.55 33.33 16.07 24.24 12.00 2 26 8
Claude 3.5 [2] - 28.71 33.76 35.64 31.63 34.0 28.87 37.26 35.71 13.63 16.0 12.0 26.0 10.0
InternVL2.5 [7] 26B 23.78 21.33 26.0 31.0 7.0 32.00 46.0 32.0 18.0 18.00 16.0 24.0 14.0
InternVL2.5 [7] 8B 22.67 20.00 18.0 33.0 9.0 30.00 46.0 30.0 14.0 18.00 16.0 28.0 10.0

Hard InternVL2.5 [7] 4B 19.56 18.67 18.0 28.0 8.0 28.00 34.0 24.0 26.0 12.00 8.0 22.0 6.0
LLaVA Next [20] 32B 16.22 20.67 16.0 32.0 14.0 11.33 12.0 12.0 10.0 16.67 10.0 30.0 10.0
LLaVA Video [47] 7B 19.78 19.33 12.0 35.0 11.0 24.67 26.0 30.0 18.0 15.33 10.0 28.0 8.0
LLaVA OneVision [21] 7B 13.67 14.33 5.0 27.0 11.0 14.67 18.0 8.0 18.0 12.0 6.0 22.0 8.0
Qwen2.5 VL [3] 32B 22.66 19.33 11.0 34.0 13.0 35.33 46.0 24.0 36.0 13.33 4.0 26.0 10.0
Qwen2.5 VL [3] 7B 22.89 26.00 17.0 30.0 31.0 30.00 40.0 32.0 18.0 12.67 2.0 30.0 6.0

GPT 4o [17] - 36.99 45.49 48.48 55 33 33.89 41.67 26.67 33.33 31.33 24 44 26
Gemini 2.5 pro [12] - 36.46 42.79 38.38 59.0 31.0 33.93 39.58 28.89 33.33 32.67 28.0 44.0 26.0
Gemini 1.5 pro [8] - 33.89 39.47 42.42 42 34 33.52 33.33 42.22 25 28.67 12 52 22
Claude 3.5 [2] - 35.35 41.78 35.35 50.0 40.0 35.60 39.58 42.22 25.0 28.67 16.0 44.0 26.0
InternVL2.5 [7] 26B 35.11 36.00 39.0 50.0 19.0 36.67 50.0 36.0 24.0 32.67 30.0 40.0 28.0
InternVL2.5 [7] 8B 34.66 37.33 43.0 57.0 12.0 35.33 42.0 46.0 18.0 31.33 26.0 44.0 24.0

Medium InternVL2.5 [7] 4B 33.89 39.67 38.0 53.0 28.0 32.67 44.0 28.0 26.0 29.33 16.0 46.0 26.0
LLaVA Next [20] 32B 20.0 27.33 16.0 49.0 17.0 10.67 14.0 10.0 8.0 22.0 16.0 36.0 14.0
LLaVA Video [47] 7B 25.67 25.00 20.0 34.0 26.0 28.67 36.0 28.0 22.0 23.33 14.0 40.0 16.0
LLaVA OneVision [21] 7B 16.67 16.00 26.0 30.0 16.0 14.67 18.0 8.0 18.0 19.33 12.0 30.0 16.0
Qwen2.5 VL [3] 32B 28.55 28.33 21.0 44.0 20.0 33.33 40.0 30.0 30.0 24.00 8.0 40.0 24.0
Qwen2.5 VL [3] 7B 29.89 39.00 37.0 42.0 38.0 30.67 32.0 40.0 20.0 20.00 16.0 26.0 18.0

GPT 4o [17] - 42.17 52.35 59 47.06 51 47.16 54.9 44.9 41.67 27.00 44 5 32
Gemini 2.5 pro [12] - 54.56 62.96 70.0 55.88 63.0 54.73 52.94 59.18 52.08 46.00 40.0 54.0 44.0
Gemini 1.5 pro [8] - 46.00 51.33 60 50 44 36.92 49.02 36.73 25 50.00 58 44 48
Claude 3.5 [2] - 48.59 60.33 61.0 50.0 70.0 36.35 35.29 51.02 22.73 49.33 64.0 44.0 40.0
InternVL2.5 [7] 26B 52.55 61.00 62.0 59.0 62.0 45.33 58.0 44.0 34.0 51.33 62.0 62.0 30.0
InternVL2.5 [7] 8B 50.11 55.67 55.0 60.0 52.0 44.67 58.0 42.0 34.0 50.00 54.0 64.0 32.0

Easy InternVL2.5 [7] 4B 44.89 53.33 46.0 60.0 54.0 37.33 48.0 38.0 26.0 44.00 44.0 48.0 40.0
LLaVA Next [20] 32B 31.25 38.00 35.0 45.0 34.0 21.33 12.0 14.0 38.0 34.67 20.0 50.0 34.0
LLaVA Video [47] 7B 31.44 33.00 30.0 31.0 38.0 33.33 38.0 36.0 26.0 28.00 16.0 32.0 36.0
LLaVA OneVision [21] 7B 29.78 32.00 31.0 33.0 32.0 24.00 26.0 30.0 16.0 33.33 28.0 36.0 36.0
Qwen2.5 VL [3] 32B 43.22 51.00 58.0 50.0 45.0 41.33 46.0 38.0 40.0 37.33 32.0 44.0 36.0
Qwen2.5 VL [3] 7B 40.67 51.33 55.0 42.0 57.0 36.00 32.0 42.0 34.0 34.67 34.0 28.0 42.0

Land Space Analysis: As shown in Table 7, we present a comprehensive evaluation of model
performance in the Land Space domain of M4R, categorized by reasoning type, video length, and
difficulty level. In the easy setting, proprietary models such as Gemini 2.5 Pro and GPT-4o exhibit
strong performance, achieving over 50% overall accuracy, with Gemini 2.5 Pro reaching the highest
at 54.56%. Among open-source models, InternVL2.5 (26B) performs competitively with an overall
accuracy of 52.55%. However, performance drops significantly across all models as task difficulty
increases and video length extends. For instance, in hard tasks involving long videos, even the
best-performing models fall below 30% average accuracy. These trends highlight the limitations of
current multimodal models in handling complex, real-world reasoning—particularly for extended
temporal sequences, fine-grained spatial relations, and intent inference. While models like GPT-4o
and Gemini 1.5 Pro show relatively strong performance on medium-difficulty tasks (36.99% and
33.89%, respectively), the results underscore the persistent challenges in achieving robust reasoning
across diverse open-space scenarios.
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Table 8: Evaluation of M4R in the Air Space domain using Short, Medium, and Long Videos,
categorized by reasoning types, based on a subset of the dataset.
Difficulty Models Size Over. Avg. Short Video Scenarios Medium Video Scenarios Long Video Scenarios

Avg. Temporal Spatial Intent Avg. Temporal Spatial Intent Avg. Temporal Spatial Intent
GPT 4o [17] - 18.11 21.33 16.00 26.00 22.00 14.67 12.00 30.00 2.00 18.33 5.00 35.00 15.00
Gemini 2.5 pro [12] - 31.39 32.83 36.0 24.49 38.0 24.67 32.0 22.0 20.0 36.67 30.0 15.0 65.0
Gemini 1.5 pro [8] - 22.34 26.67 24.00 26.00 30.00 18.67 20.00 22.00 14.00 21.67 10.00 25.00 30.00
Claude 3.5 [2] - 24.22 26.00 18.0 32.0 28.0 23.33 20.0 28.0 22.0 23.33 10.0 40.0 20.0
InternVL2.5 [7] 26B 17.33 19.33 24.00 26.00 10.00 19.33 16.00 32.00 10.00 13.33 10.00 10.00 20.00
InternVL2.5 [7] 8B 18.22 18.67 20.00 28.00 8.00 19.33 16.00 30.00 12.00 16.67 5.00 35.00 10.00

Hard InternVL2.5 [7] 4B 15.33 15.33 14.00 10.00 22.00 14.00 16.00 18.00 8.00 16.67 15.00 30.00 5.00
LLaVA Next [20] 32B 17.89 18.67 14.0 34.0 8.0 16.67 6.0 32.0 12.0 18.33 5.0 40.0 10.0
LLaVA Video [47] 7B 14.78 16.67 14.00 28.00 8.00 12.67 6.00 22.00 10.00 15.00 5.00 30.00 10.00
LLaVA OneVision [21] 7B 15.67 16.00 12.00 28.00 8.00 16.00 12.00 26.00 10.00 15.00 10.00 25.00 10.00
Qwen2.5 VL [3] 32B 16.22 20.00 6.00 36.00 18.00 15.33 4.00 24.00 18.00 13.33 0.00 30.00 10.00
Qwen2.5 VL [3] 7B 16.55 19.33 0.00 30.00 28.00 15.33 2.00 30.00 14.00 15.00 5.00 30.00 10.00

GPT 4o [17] - 38.45 38.67 38.00 56.00 22.00 30.00 38.00 34.00 18.00 46.67 65.00 30.00 45.00
Gemini 2.5 pro [12] - 43.11 44.67 42.0 40.0 52.0 31.33 34.0 34.0 26.0 53.33 60.0 35.0 65.0
Gemini 1.5 pro [8] - 38.78 38.00 32.00 48.00 34.00 36.67 34.00 52.00 24.00 41.67 30.00 55.00 40.00
Claude 3.5 [2] - 39.67 38.00 26.0 40.0 48.0 36.00 32.0 54.0 22.0 45.00 50.0 35.0 50.0
InternVL2.5 [7] 26B 28.67 31.33 28.00 58.00 8.00 24.67 12.00 50.00 12.00 30.00 25.00 45.00 20.00
InternVL2.5 [7] 8B 34.33 30.00 20.00 58.00 12.00 34.67 32.00 50.00 22.00 38.33 40.00 45.00 30.00

Medium InternVL2.5 [7] 4B 32.22 29.33 28.00 44.00 16.00 34.00 30.00 54.00 18.00 33.33 35.00 40.00 25.00
LLaVA Next [20] 32B 26.11 24.67 18.0 40.0 16.0 25.33 18.0 40.0 18.0 28.33 25.0 40.0 20.0
LLaVA Video [47] 7B 24.00 25.33 24.00 36.00 16.00 20.00 16.00 26.00 18.00 26.67 15.00 45.00 20.00
LLaVA OneVision [21] 7B 23.67 23.33 20.00 34.00 16.00 22.67 20.00 32.00 16.00 25.00 20.00 35.00 20.00
Qwen2.5 VL [3] 32B 33.34 32.67 12.00 48.00 38.00 30.67 22.00 50.00 20.00 36.67 20.00 60.00 30.00
Qwen2.5 VL [3] 7B 28.00 24.67 16.00 24.00 34.00 26.00 24.00 26.00 28.00 33.33 35.00 20.00 45.00

GPT 4o [17] - 40.67 35.33 30.00 28.00 48.00 36.67 24.00 38.00 48.00 50.00 45.00 50.00 55.00
Gemini 2.5 pro [12] - 52.56 56.00 60.0 48.0 60.0 40.00 40.0 36.0 44.0 61.67 75.0 35.0 75.0
Gemini 1.5 pro [8] - 43.00 45.33 36.00 44.00 56.00 42.00 48.00 32.00 46.00 41.67 35.00 50.00 40.00
Claude 3.5 [2] - 42.45 38.00 34.0 38.0 42.0 42.67 30.0 56.0 42.0 46.67 40.0 45.0 55.0
InternVL2.5 [7] 26B 36.11 35.33 36.00 44.00 26.00 34.67 28.00 46.00 30.00 38.33 30.00 40.00 45.00
InternVL2.5 [7] 8B 38.44 36.67 28.00 46.00 36.00 35.33 32.00 42.00 32.00 43.33 60.00 40.00 30.00

Easy InternVL2.5 [7] 4B 40.33 43.33 42.00 50.00 38.00 39.33 30.00 44.00 44.00 38.33 35.00 60.00 20.00
LLaVA Next [20] 32B 33.22 36.67 36.00 42.0 32.0 31.33 36.0 32.0 26.0 31.67 35.0 30.0 30.0
LLaVA Video [47] 7B 33.22 33.33 34.00 38.00 28.00 34.67 34.00 38.00 32.00 31.67 35.00 30.00 30.00
LLaVA OneVision [21] 7B 33.22 33.33 34.00 38.00 28.00 34.67 34.00 38.00 32.00 31.67 35.00 30.00 30.00
Qwen2.5 VL [3] 32B 52.45 50.00 34.00 56.00 60.00 50.67 40.00 54.00 58.00 56.67 55.00 60.00 55.00
Qwen2.5 VL [3] 7B 39.89 33.33 28.00 18.00 54.00 38.00 48.00 16.00 50.00 48.33 55.00 30.00 60.00

Air Space Analysis: Table 8 presents model performance in the Air Space domain of M4R,
evaluated across short, medium, and long video scenarios, and categorized by temporal, spatial, and
intent reasoning tasks. In the easy setting, Gemini 2.5 Pro achieves the highest overall accuracy
(52.56%), outperforming all other models, including GPT-4o and Qwen2.5 (32B). In the medium
setting, Gemini 2.5 Pro again leads with 43.11%, followed closely by Gemini 1.5 Pro (38.78%)
and GPT-4o (38.45%). For hard tasks, which are the most challenging, Gemini 2.5 Pro remains
the top performer with 31.39%. These results highlight the ability of the Gemini family of models
to maintain performance in complex, dynamic airspace environments. Meanwhile, GPT-4o and
Qwen2.5 models show competitive results in easier tasks but exhibit notable drops as the reasoning
complexity increases, revealing current limitations in handling temporal, spatial, and intent-based
challenges in aerial domains. Moreover, Table 9 presents model performance on the M4R benchmark
in the Water Space domain, covering both river and ocean scenarios across varying reasoning types
and difficulty levels. Gemini models consistently outperform other models across all settings.

These findings demonstrate M4R’s ability to reveal the limitations of existing multimodal models,
particularly in safety-critical and physically grounded domains. By highlighting domain-specific
reasoning gaps, especially in underexplored high-stakes environments such as autonomous driving,
ship navigation, and airspace, M4R serves as a tool for guiding the development of more robust,
temporally aware, and intent-aware multimodal systems.

4.4 Model Error Analysis

To demonstrate the effectiveness of our benchmark and evaluate the performance of state-of-the-art
(SOTA) models, we conduct a qualitative analysis of model predictions on the M4R benchmark.
As shown in Figure 5, the analysis highlights persistent challenges in spatial, temporal, and intent
reasoning across open-space environments, particularly in land and air domains. Despite the strong
overall performance of leading multimodal models such as ChatGPT-4o and Gemini 2.5, the results
reveal consistent failure cases in real-world scenarios. For example, both models struggle with
accurately identifying spatial relationships (e.g., relative positions of vehicles), counting dynamic
objects over time (e.g., cars in motion), and understanding goal-directed interactions (e.g., airplane
passing events).
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Table 9: Evaluation of M4R in the Water Space domain using River and Ocean Videos, categorized
by reasoning types, based on a subset of the dataset.

Difficulty Models Size Over. Avg. River Scenarios Ocean Scenarios
Avg. Temporal Spatial Intent Avg. Temporal Spatial Intent

GPT4o [17] - 22.10 28.20 38.46 26.92 19.23 16.00 18.00 18.00 12.00
Gemini 2.5 pro [12] - 29.64 34.62 23.08 34.62 46.15 24.67 38.0 16.0 20.0
Gemini 1.5 pro [8] - 26.02 26.92 23.08 30.77 26.92 25.11 34.00 20.93 20.41
Claude 3.5 [2] - 25.44 28.20 19.23 19.23 46.15 22.67 26.0 22.0 20.0
InternVL2.5 [7] 26B 22.54 23.08 15.38 19.23 34.62 22.00 18.00 28.00 20.00
InternVL2.5 [7] 8B 21.90 21.79 7.69 26.92 30.77 22.00 16.00 28.00 22.00

Hard InternVL2.5 [7] 4B 20.92 20.51 19.23 19.23 23.08 21.33 16.00 26.00 22.00
LLaVA Next [20] 32B 14.39 11.54 7.69 19.23 7.69 15.33 8.0 30.0 8.0
LLaVA Video [47] 7B 14.00 16.67 15.38 23.08 11.54 11.33 8.00 20.00 6.00
LLaVA OneVision [21] 7B 15.67 16.67 11.54 26.92 11.54 14.67 8.00 28.00 8.00
Qwen2.5 VL [3] 32B 13.39 14.10 7.69 23.08 11.54 12.67 8.0 24.0 6.0
Qwen2.5 VL [3] 7B 14.67 16.67 7.69 30.77 11.54 12.67 6.00 24.00 8.00

GPT 4o [17] - 38.49 42.31 50.00 53.85 23.08 34.67 36.00 48.00 20.00
Gemini 2.5 pro [12] - 41.77 44.87 30.77 61.54 42.31 38.67 48.0 46.0 22.0
Gemini 1.5 pro [8] - 46.31 53.84 46.15 65.38 50.00 38.78 34.00 49.02 33.33
Claude 3.5 [2] - 38.62 35.90 34.62 50.0 23.08 41.33 42.0 54.0 28.0
InternVL2.5 [7] 26B 41.77 44.87 30.77 57.69 46.15 38.67 24.00 62.00 30.00
InternVL2.5 [7] 8B 41.08 46.15 34.62 61.54 42.31 36.00 34.00 60.00 14.00

Medium InternVL2.5 [7] 4B 44.36 48.72 23.08 65.38 57.69 40.00 28.00 60.00 32.00
LLaVA Next [20] 32B 20.88 23.08 11.54 38.46 19.23 18.67 10.00 30.00 16.00
LLaVA Video [47] 7B 21.92 20.51 19.23 26.92 15.38 23.33 20.00 30.00 20.00
LLaVA OneVision [21] 7B 22.54 23.08 19.23 30.77 19.23 22.00 14.00 34.00 18.00
Qwen2.5 VL [3] 32B 33.31 34.62 19.23 50.00 34.62 32.00 20.00 50.00 26.00
Qwen2.5 VL [3] 7B 24.08 29.49 19.23 30.77 38.46 18.67 18.00 26.00 12.00

GPT 4o [17] - 50.51 57.69 57.69 50.00 65.38 43.33 66.00 34.00 30.00
Gemini 2.5 pro [12] - 61.05 64.10 57.69 57.69 76.92 58.00 72.0 50.0 52.0
Gemini 1.5 pro [8] - 50.69 52.56 42.31 61.54 53.85 48.81 50.00 46.43 50.00
Claude 3.5 [2] - 49.39 47.44 50.0 53.85 38.46 51.33 62.0 52.0 40.0
InternVL2.5 [7] 26B 55.05 64.10 65.38 57.69 69.23 46.00 50.00 50.00 38.00
InternVL2.5 [7] 8B 53.47 60.26 69.23 46.15 65.38 46.67 46.00 54.00 40.00

Easy InternVL2.5 [7] 4B 53.87 56.41 53.85 57.69 57.69 51.33 52.00 56.00 46.00
LLaVA Next [20] 32B 35.59 37.18 26.92 53.85 30.77 34.00 30.00 38.00 34.00
LLaVA Video [47] 7B 31.03 32.05 30.77 34.62 30.77 30.00 22.00 38.00 30.00
LLaVA OneVision [21] 7B 33.00 33.33 34.62 34.62 30.77 32.67 28.00 38.00 32.00
Qwen2.5 VL [3] 32B 52.77 61.54 53.85 61.54 69.23 44.00 40.00 54.00 38.00
Qwen2.5 VL [3] 7B 31.31 34.62 38.46 19.23 46.15 28.00 36.00 22.00 26.00

Figure 5: Qualitative error analysis of state-of-the-art multimodal models (Gemini 2.5 and ChatGPT-
4o) on the M4R benchmark. Each example illustrates a failure case in a different reasoning category:
spatial reasoning (left), temporal reasoning (middle), and intent reasoning (right). Despite their capa-
bilities, both models struggle with spatial localization, counting dynamic objects, and understanding
goal-directed motion in real-world open-space scenarios.
These failure cases underscore the limitations of current models in handling safety-critical, perception-
intensive tasks. By providing richly annotated, video-based tasks that demand multi-step reasoning
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grounded in physics, causality, and spatial understanding, M4R serves as a rigorous diagnostic
benchmark. Our findings highlight the necessity of such benchmarks for advancing the robustness,
safety, and real-world applicability of large multimodal systems.

4.5 Ablation Experiments

In our experiments, due to the high cost of evaluating all data points, we adopt a uniform sampling
strategy to select a representative subset of tasks. Specifically, for each reasoning type, we sample 50
tasks when the total number of available tasks is fewer than 500, and 100 tasks when the number
exceeds 500. The M4R spans three open-space scenarios—land space, air space, and water
space—each with three video lengths (short, medium, long), three difficulty levels (easy, medium,
hard), and three reasoning types: temporal, spatial, and intent-based reasoning.

Following this sampling strategy, we evaluate a total of 3,798 tasks, evenly distributed across the
three reasoning types: 1,266 spatial reasoning, 1,266 temporal-causal reasoning, and 1,266 intent
and goal reasoning tasks.

To assess the reliability of this sampling approach, we conduct an ablation study comparing model
performance on sampled tasks versus the full set of data points in the land space (short, easy) setting.
We use InternVL 2.5, one of the leading open-source multimodal models, which ranks highly on
several leaderboards such as 6 and 7. As shown in Table 10, performance on the sampled subset
is comparable to, and in some cases slightly better than, performance on the full dataset. These
results validate the effectiveness of our sampling strategy in preserving benchmark consistency while
reducing evaluation cost.

Table 10: Performance Comparison on Land Space Short (Easy): Full vs. Sample Data Points

Model Full Data Points Sample Data Points
Avg. Temporal Spatial Intent Avg. Temporal Spatial Intent

InternVL2_5-26B 55.62 57.61 50.37 58.88 61.00 62.00 59.00 62.00
InternVL2_5-8B 49.26 51.89 48.57 47.31 55.67 55.00 60.00 52.00
InternVL2_5-4B 50.65 50.17 50.70 51.10 55.33 52.00 55.00 59.00

5 Conclusion

In this work, we introduce M4R, a large-scale benchmark for evaluating multimodal understanding
and reasoning in real-world open-space environments. Spanning three critical domains—land, air,
and water—M4R provides richly annotated, video-based tasks designed to assess model performance
across three fundamental reasoning dimensions: temporal reasoning, spatial reasoning, and intent
and goal inference. The benchmark encompasses a broad range of scenarios, video lengths, and
difficulty levels, enabling comprehensive evaluation in safety-critical, perception-intensive settings.
Through extensive qualitative and quantitative analyses, we demonstrate that even state-of-the-art
multimodal models—both proprietary systems such as ChatGPT-4o and Gemini 2.5, and leading open-
source models like Qwen and InternVL—exhibit significant limitations when reasoning over complex,
dynamic physical environments. These results underscore the need for more robust, temporally-aware,
and goal-sensitive multimodal systems capable of reliable understanding in real-world scenarios. We
hope that M4R will serve as a valuable resource for the research community and help advance the
development of safer, more generalizable, and practically deployable multimodal AI systems.
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Appendix

A Limitation and Impact

Limitation Our benchmark provides a valuable tool for evaluating model performance in open-
space environments. However, due to the large scale of the dataset, evaluating all data points is
computationally expensive. As a result, we were unable to perform large-scale testing with high-cost
proprietary models such as ChatGPT and Gemini. In future work, we plan to explore more efficient
evaluation strategies and extend our analysis to a broader set of models, including closed-source
systems.

Impact This benchmark offers a new direction for advancing multi-modal model development
in open-space, safety-critical, and physically grounded real-world environments. By emphasizing
temporal, spatial, and intent-based reasoning in diverse video scenarios, this benchmark can be useful
to guide the design of more robust and reliable multi-modal systems. While this research seeks to
advance the capabilities of AI in complex settings, we do not identify any specific societal risks or
consequences requiring special attention at this time.

B Annotation and Detailed Examples

During data annotation, we first define the question types, then watch each video to design corre-
sponding questions and annotate the answers. Our dataset contains approximately 2101 videos and
19,136 question–answer pairs, evenly distributed across three difficulty levels: easy (1/3), medium
(1/3), and hard (1/3). The difficulty is determined by both the number and type of answer choices.
Hard questions typically include 12 choices for temporal and intent reasoning, and 4 for spatial
reasoning, requiring precise selection. Medium questions generally offer 6 choices for temporal and
intent reasoning, and 3 for spatial reasoning, often involving interval-based options. Easy questions
usually present 3 choices, or 2 for spatial reasoning, and also rely on interval-based distinctions.

Moreover, we provide several example scenarios illustrating understanding and reasoning in open
space, as shown in Figure 6. Moreover, as illustrated in Figure 7, we present a detailed question-
and-answer example. For each open-space reasoning setting, we include three video lengths, short,
medium, and long, each featuring tasks designed to evaluate temporal, spatial, and intent reasoning.

Understanding	and	Reasoning	in	Land-Space	Scenarios

Understanding	and	Reasoning	in	Air-Space	Scenarios

Understanding	and	Reasoning	in	Water-Space	Scenarios

Understanding	and	Reasoning	in	Open	Space

Figure 6: Example Scenarios of Understanding and Reasoning in Open Space
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Figure 7: A question and answer example: For each open-space reasoning setting, we include three
types of video lengths: short, medium, and long. Each video length includes tasks designed to
evaluate temporal reasoning, spatial reasoning, and intent reasoning.

C Detailed Experiment Settings

In our experiments, we build upon the lmms-eval framework [46] as the foundation for our bench-
mark and extend it to support the specific requirements of M4R. All experiments with open-source
models were conducted on a Linux system equipped with 8 × NVIDIA A100 GPUs, and experiments
with closed-source models were run on a single NVIDIA A100 GPU. Key hyperparameters used for
model evaluation are summarized in Table 11. More detailed experimental settings are available in
our code: https://open-space-reasoning.github.io.

Table 11: Key parameters used in the experiments.

Parameters value Parameters value

sample size 1 number of processes 8
max pixels (Qwen 2.5) 12845056 use-flash-attention-2 (Qwen 2.5) False

interleave visuals (Qwen 2.5) True enable-chunked-prefill (InternVL 2.5) True
gpu-memory-utilization (InternVL 2.5) 0.6 max-num-seqs (InternVL 2.5) 1

conv-template (LLava-Video) qwen-1-5 video-decode-backend (LLava-Video) record
max-frames-num (LLava-Video) 22 mm-spatial-pool-mode (LLava-Video) average

mm-newline-position (LLava-Video) grid mm-resampler-location (LLava-Video) after
conv-template (llava-onevision) qwen-1-5 device-map (llava-onevision) auto
model-name (llava-onevision) llava-qwen
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